Considerations of 2 K Operations

Tsuyoshi Tajima LANL

Workshop on the Advanced Design of Spoke Resonators

Los Alamos, NM, USA October 7 and 8, 2002

What are the differences between 4 K and 2 K?

- Thermal conductivity of LHe at 2 K is much greater than at 4 K
 - Thermal conductivity of saturated 4 K liquid helium is 1.87E-2 W/mK.
 - Thermal conductivity of 2 K superfluid helium is 1.2E5/q² W/mK. (q is heat flux in W/cm²).
- Cavity surface resistance Rs gets lower with lower temperatures, i.e., BCS resistance decreases exponentially with temperature.

Film boiling limit vs. bath temperature

(H. Padamsee, "Heat transfer and models for beakdown," CLNS 80/469, July 1980)

(3)

The Cavity Surface Resistance, R.

$$R_s = R_{BCS} + R_{residual}$$

$$R_{BCS} = A \cdot \frac{f^2}{T} \cdot \exp \left(-\frac{\Delta}{k_B T_c} \cdot \frac{T_c}{T} \right)$$
 Δ : Energy gap T_c : Transition temp, 9.25 K for Nb.

f: Cavity frequency

T: Operation temp.

9.25 K for Nb.

$$R_{BCS}$$
 (ohm) = 2×10⁻⁴ $\frac{1}{T} \left(\frac{f [GHz]}{1.5} \right)^2 \exp \left(-\frac{17.67}{T} \right)$

$$R_{res} = R_{res} (H_{rf}) + R_{fl} (H_{rf}, H_{ext}, T)$$

 $R_{res} = 1 \sim 10$ nohms with well prepared surface

BCS Resistance vs. Temperature

BCS Resistance vs Temperature

Surface Resistance with R_{res} = 10 nohms

Surface resistance with $R_{res} = 1$ nohm

Assuming residual resistance of 1 nohm

Q_0 vs. Temperature with $R_{res} = 1$ nohm

Q_0 vs. Temperature with $R_{res} = 10$ nohms

Cavity Loss of LANL/AAA 2-Gap Spoke, $R_{res} = 10$ nohms

LANL/AAA 2-gap Spoke Cavity Losses with Rres=10 nohms

G=64.1 ohms

- Ea=7.5 MV/m
 - Ea=10 MV/m
- Ea=15 MV/m
- -Ea=20 MV/m

Assumption:

 Q_0 does not change with Ea, which is not true with many cavities.

Cavity Loss of LANL/AAA 2-Gap Spoke, $R_{res} = 1$ nohm

G=64.1 ohms

- Ea=7.5 MV/m
- -Ea=10 MV/m
- Ea=15 MV/m
- Ea=20 MV/m

Assumption:

 Q_0 does not change with Ea, which is not true with many cavities.

An Experience with LANL/APT 700-MHz β =0.64 Elliptical Cavity

LANL Cavity on 1-18-01 with the data on 8-30-00

There is a defect on the equator weld of middle cell and limited by quencl

•2 K is not always better than 4 K.

An Experience with ANL β=0.29, 340-MHz, 2-Gap Spoke Cavity

ANL β =0.29 s poke cavity Q vs. Eacc

■ 4K Aft. Helium Process 🛕 2K Aft. Helium Process • ADTF Spec.

4 K and 2 K limits are the same

How About Costs of a Cryogenic Plant at 4.5 K and 2 K?

According to H. Safa's paper in LINAC98 conference,

$$C_{captital}(\$) = 3000 \left(3 + \frac{4.5}{T}\right) \left(\frac{\eta_{4.5K}}{\eta}R\right)^{0.7}$$

$$C_{operation}(\$/year) \approx 0.35 \times P_{AC} = 0.35 \frac{R}{\eta}$$

T: operation temperature

R: refrigeration power in W

 $\eta_{4.5K}$: overall efficiency at 4.5 K

η: overall efficiency

P_{AC}: AC electric power of the cryogenic plant

Overall Efficiency of Cryogenic Plant, η

$$\eta = \eta_r \cdot \eta_{Carnot}$$

$$\eta_r = 0.035 \text{Ln(R)} \tanh\left(\frac{T}{3}\right)$$

$$\eta_{Carnot} = \frac{T}{T_a - T}$$

T_a: Room temperature, 310 K is generally taken.

An Example with AAA 600 MeV Nuclear Waste Transmuter

Assumptions:						
Ref. SC Linac Design Parameters,						
Strawman S2 Design 6, R. Garnett, LANSCE-1:01-063						
	β	f (MHz)	Туре	No. Cavity	Ea (MV/m)	G (ohms)
Section 1	0.175	350	2-gap spoke	80	7.5*	64.1
Section 2	0.34	350	3-gap spoke	36	7.5*	94.5*
Section 3	0.48	700	5-cell elliptical	32	7.5*	133*
Section 4	0.64	700	5-cell elliptical	93	7.5*	149

*Modified for simplicity or due to no specific design yet

An Example with AAA 600 MeV Nuclear Waste Transmuter

Costs in M\$			
R _{res} =10 nohms			
Operation temperature	4.5 K	4.5K/2K	2K
Capital cost in sections 1 and 2	19.1	19.1	18.7
Capital cost in sections 3 and 4	268	126	126
Total cryogenic loss	24.6 kW	2.13 kW	1.68 kW
Total capital cost	287	145	145
Total operational cost per year	1.85	0.631	0.625
R _{res} =1 nohm			
Operation temperature	4.5 K	4.5K/2K	2K
Capital cost in sections 1 and 2	16.9	16.9	5.32
Capital cost in sections 3 and 4	259	56.4	56.4
Total cryogenic loss	23.4 kW	0.964 kW	0.516 kW
Total capital cost	276	73.3	61.7
Total operational cost per year	1.77	0.269	0.228

(17)

Action Items for Further Study

- Collect more data on the difference of gradient limitation at 4 K and 2 K
- Analyze the loss mechanisms and classify the situations where 2 K operation is advantageous.
- Cost analyses of cryogenic plant including static losses, margins and other items.
- Analyze further the benefits of 2 K only system as compared to 4.5K/2K system.
- How about replacing β =0.48 section with spoke cavities and operate at 4.5 K?

